Electrode placement on the forearm for selective stimulation of finger extension/flexion

نویسندگان

  • Xueliang Bao
  • Yuxuan Zhou
  • Yunlong Wang
  • Jianjun Zhang
  • Xiaoying Lü
  • Zhigong Wang
چکیده

It is still challenging to achieve a complex grasp or fine finger control by using surface functional electrical stimulation (FES), which usually requires a precise electrode configuration under laboratory or clinical settings. The goals of this study are as follows: 1) to study the possibility of selectively activating individual fingers; 2) to investigate whether the current activation threshold and selective range of individual fingers are affected by two factors: changes in the electrode position and forearm rotation (pronation, neutral and supination); and 3) to explore a theoretical model for guidance of the electrode placement used for selective activation of individual fingers. A coordinate system with more than 400 grid points was established over the forearm skin surface. A searching procedure was used to traverse all grid points to identify the stimulation points for finger extension/flexion by applying monophasic stimulation pulses. Some of the stimulation points for finger extension and flexion were selected and tested in their respective two different forearm postures according to the number and the type of the activated fingers and the strength of finger action response to the electrical stimulation at the stimulation point. The activation thresholds and current ranges of the selectively activated finger at each stimulation point were determined by visual analysis. The stimulation points were divided into three groups ("Low", "Medium" and "High") according to the thresholds of the 1st activated fingers. The angles produced by the selectively activated finger within selective current ranges were measured and analyzed. Selective stimulation of extension/flexion is possible for most fingers. Small changes in electrode position and forearm rotation have no significant effect on the threshold amplitude and the current range for the selective activation of most fingers (p > 0.05). The current range is the largest (more than 2 mA) for selective activation of the thumb, followed by those for the index, ring, middle and little fingers. The stimulation points in the "Low" group for all five fingers lead to noticeable finger angles at low current intensity, especially for the index, middle, and ring fingers. The slopes of the finger angle variation in the "Low" group for digits 2~4 are inversely proportional to the current intensity, whereas the slopes of the finger angle variation in other groups and in all groups for the thumb and little finger are proportional to the current intensity. It is possible to selectively activate the extension/flexion of most fingers by stimulating the forearm muscles. The physiological characteristics of each finger should be considered when placing the negative electrode for selective stimulation of individual fingers. The electrode placement used for the selective activation of individual fingers should not be confined to the location with the lowest activation threshold.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Automatic determination of the optimal shape of a surface electrode: selective stimulation.

We present a method for automatic determination of the shape and position of the surface electrode for selective control of fingers extension and flexion by means of electrical stimulation. The multi-pad electrodes used in the experiments comprised 24 pads (1cm diameter) distributed over an area (7 cm x 10 cm) positioned over dorsal and volar aspects of the forearm. The four-channel stimulation...

متن کامل

Multi-field surface electrode for selective electrical stimulation.

We designed a 24-field array and an on-line control box that selects which and how many of 24 fields will conduct electrical charge during functional electrical stimulation. The array was made using a conductive microfiber textile, silver two-component adhesive, and the conductive ink imprint on the polycarbonate. The control box comprised 24 switches that corresponded one-to-one to the fields ...

متن کامل

Myoelectric Signal Based Finger Motion Discrimination by using Wavelet’s and Pattern Recognisition

This paper details a strategy of discriminating finger Gestures using surface electromyography (EMG) signals, which could be applied to controlling the advanced multi-fingered myoelectric prosthesis for hand amputees. Finger motions discrimination is the key problem in this study. The EMG signal classification system was established based on the surface EMG signals from the subject’s forearm. F...

متن کامل

Corticospinal excitability modulation in resting digit muscles during cyclical movement of the digits of the ipsilateral limb

We investigated how corticospinal excitability of the resting digit muscles was modulated by the digit movement in the ipsilateral limb. Subjects performed cyclical extension-flexion movements of either the right toes or fingers. To determine whether corticospinal excitability of the resting digit muscles was modulated on the basis of movement direction or action coupling between ipsilateral di...

متن کامل

Extrinsic flexor muscles generate concurrent flexion of all three finger joints.

The role of the forearm (extrinsic) finger flexor muscles in initiating rotation of the metacarpophalangeal (MCP) joint and in coordinating flexion at the MCP, the proximal interphalangeal (PIP), and distal interphalangeal (DIP) joints remains a matter of some debate. To address the biomechanical feasibility of the extrinsic flexors performing these actions, a computer simulation of the index f...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 13  شماره 

صفحات  -

تاریخ انتشار 2018